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SELF-SIMILAR SOLUTION OF THE

ANTIPLANE SHEAR FRACTURE PROBLEM

IN A COUPLED FORMULATION (CREEP–DAMAGE)

UDC 539.376L. V. Stepanova and M. E. Fedina

A growing antiplane shear crack in a damaged medium is considered. It is assumed that the crack
tip neighbors a region of completely damaged material, in which all stress tensor components and
the continuity parameter vanish. The stress–strained state is analyzed and the configuration of the
region of completely damaged material is determined. The crack growth rate is estimated for various
values of the constants included in the constitutive relations and kinetic equation.

Recently there have been a great number of studies in which the stress–strain state in the neighborhood of
the tip of both stationary and growing cracks is determined in a coupled formulation using elasticity, plasticity, and
creep theories and damage mechanics [1–12]. It is of interest to study the effect of damage accumulation on the
stress and strain distribution (or creep strain rates). From a practical viewpoint, it is important to determine the
rate of subcritical crack growth.

Two-dimensional problems of stationary and growing semi-infinite cracks in an infinite body in a coupled
formulation (elasticity–damage and creep–damage) have a number of special features. In particular, in [1–6], it
is shown that the effect of damage accumulation is manifested by the absence of stresses in the neighborhood
of the crack tip or by considerable weakening of the singularity of this field. Astaf’ev et al. [1, 2] established
that as the crack tip is approached, the effective stresses σij/ψ (σij are the stress tensor components and ψ is
the Kachanov–Rabotnov continuity parameter) are limited and the continuity parameter, and the stress-tensor
components decrease linearly to zero. Investigation of the resultant system of ordinary differential equations for
various values of the constants m and n, included in the kinetic equation shows that the coupling of the formulation
of the problem weakens the singularity (compared to the classical asymptotic relations in linear fracture mechanics)
of the stress fields for small values of m and n, whereas with increase in the values of these parameters, the singularity
disappears [3–6].

Another distinguishing feature of this type of problems is the existence of a region of completely damaged
material, in which all stress-tensor components and continuity vanish [1, 2]. The coefficients of asymptotic expan-
sions of the stress-tensor components (their angular distributions) and continuity were determined numerically in
[1, 2]. It was established that beginning with a certain value of the polar angle ϕd (the value of ϕ = π corresponds
to the upper side of the crack and the value of ϕ = 0 to the crack prolongation), the function defining the principal
term of the asymptotic expansion of the continuity parameter takes negative values, which contradicts the physical
meaning of this quantity. Therefore, the formulation was modified. According to this formulation, a solution is
sought for 0 6 ϕ 6 ϕd. The region ϕd 6 ϕ 6 π localized in the neighborhood of the tip of a propagating crack
is a completely damaged zone, in which all stress-tensor components and continuity are zero. On the boundary
between the regions, the continuity function and the necessary stress-tensor components are continuous. Because
the boundary conditions on the crack sides cannot be satisfied, Zhao and Zhang [3, 4] modify the formulation of the
problem by introducing a region of completely damaged material adjoining the crack sides. In [3, 4], it is assumed
that the zone of damage accumulation is adjacent to the crack tip and at infinity there is a zone in which the
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material is linearly elastic. Furthermore, in a certain region between these zones, the stress behavior is given by the
asymptotic formula σij ∼ r−1/p, where p > 2, because the stress singularity should be weaker than the singularity
of the elastic solution. This hypothesis allows one to formulate the boundary condition at an infinite point, which
closes the formulation of the problem, and to determine the rate of fatigue growth of the crack.

To solve problems of antiplane shear cracks, Jin and Batra [7] and Wang and Kishimoto [8] used the
hodograph method assuming that the damage parameter is a function of only stresses. It is assumed that there are
three regions: a region in which damage accumulation has not yet begun, a region of active damage accumulation,
and a region in which damage accumulation has already completed and the continuity (or damage) parameter has
reached a critical value. In [7, 8], the last region is called a saturation zone. Generally, for a propagating crack,
damage also depends on space coordinates. Therefore, the kinetic equation does not admit simple integration, and,
hence the hodograph method cannot be used. Murakami et al. [9] seek stress fields and the damage parameter in
the neighborhood of the tip of an opening mode crack in the case of steady crack growth. However, to construct a
solution, it is necessary to know the dimensions of the region of completely damaged material and its configuration.
Using experimental data, Murakami et al. [9] consider the damaged region as an half-ellipse and redefine it by rays
parallel to the crack sides. Thus, the geometry of the region is not determined but is specified beforehand.

In [3, 4], where the fatigue growth of an opening mode crack is studied in a coupled formulation, the boundary
of the damaged zone is determined using the fact that the kinetic equation has two “branches,” which define two
states of the material: damage accumulation in the neighborhood of the crack tip and the absence of damage
accumulation.

Stepanova and Fedina [10] and Astaf’ev et al. [11] assumed the existence of a region of completely damaged
material, in which all stress-tensor components and the continuity parameter are equal to zero. Because of this
zone is present near the crack tip, asymptotic expansions of the stress-tensor component and continuity parameter
cannot be sought in a small neighborhood of the crack tip. Therefore, all asymptotic solutions were determined
in a coordinate system shifted to the right of the tip at a distance equal to the characteristic linear dimension of
the region of completely damaged material. It turned out that in the eigenfunction expansions of the continuity
parameter and the stress-tensor component, the exponential terms are not related to one another. Therefore, one of
the terms was specified a priori, which limits the generality of the problem. In [10, 11], the geometry of the region
of completely damaged material is determined for various values of material constants.

In the present paper, fields of stresses, creep strain rates, and continuity are studied in a coupled formulation
(creep–damage) using the self-similar variable proposed in [12] and by expanding the desired values in eigenfunctions
for large distances from the crack tip. Crack growth is modelled, and the geometry of the region of completely
damaged material in the neighborhood of the crack is determined.

1. Formulation of the Problem of Crack Growth in a Damaged Medium. A growing semi-infinite
crack in an infinite body of a material with the constitutive relations of the coupled problem of creep theory and
damage mechanics constructed with the use of the following power-law relation between creep strain rates and
stresses:

ε̇ij =
3
2
B
(σe
ψ

)n−1 sij
ψ
. (1.1)

Here ε̇ij are the components of the creep strain rate tensor, B and n are material constants, σe =
√

3sijsij/2 is the
stress intensity, ψ is the continuity parameter, and sij are the stress deviator components.

The kinetic equation defines the power law of damage accumulation:

dψ

dt
= −A

(σe
ψ

)m
(1.2)

(t is time and A and m are material constants).
As r →∞, the asymptotic condition becomes

σij(r →∞, ϕ, t)→ C̃rβ σ̄ij(ϕ, n), (1.3)

where the exponent β is determined in the course of solution of the problem, σ̄ij(ϕ, n) are functions to be determined,
r and ϕ are polar coordinates. The case of β = −1/2 and C̃ = Kα [Kα = KI, KII, and KIII are the stress intensity
factors and σ̄ij(ϕ, n) are the angular distributions of the stress-tensor components of the linearly elastic problem]
corresponds to the assumption that the configuration of the region of completely damaged material is defined by the
singular elastic solution. The equalities β = −1/(n+ 1) and C̃ = (C∗/(BIn))1/(n+1) (C∗ is the invariant integral of
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the theory of steady creep and In is a function dependent on n and determined as a dimensionless C∗-integral) follow
from the hypothesis that the geometry of the damaged zone is defined by the Hutchinson–Rice–Rosengren solution
[13]. In this case, σ̄ij(ϕ, n) are functions known from the Hutchinson–Rice–Rosengren solution. If β = −1/(n− 1)
and C̃ = (ȧ/(BG))1/(n−1) (ȧ is the crack growth rate and G is the shear modulus), it is necessary to use the Hui–
Riedel solution [14] taking into account elastic strain rates. Thus, the exponent β is considered unknown a priori
because it is difficult to determine what asymptotic form describes the configuration of the region of completely
damaged material.

By virtue of (1.3), the initial conditions are

σij(r, ϕ, t = 0) = C̃rβ σ̄ij(ϕ, n). (1.4)

2. Self-Similarity as a Property of the Solution of the Problem. For the constitutive relation (1.1)
with the initial and boundary conditions (1.4) and (1.3) there is a self-similar variable

R = rC̃1/β(At)1/(βm), (2.1)

where β = −1/(n + 1) corresponds to the self-similar variable proposed in [12]. The existence of the self-similar
variable R in the form of (1.2) is easily substantiated by dimensional analysis.

Indeed, the radius, time, and stress-tensor components can be reduced to dimensionless form

r̂ = rL−1, t̂ = t T−1, σ̂ij = σij(C̃Lβ)−1,

where L is a certain characteristic linear dimension and T is a certain characteristic time. The relation be-
tween the characteristic length L and the time T is established by analysis of the kinetic equation (1.2):
T = C̃−mL−βmA−1. The dimensionless stresses σ̂ij as functions of the dimensionless variables are written as
σ̂ij(r̂, ϕ, t̂) = C̃−1L−βσij(rL−1, ϕ, tAC̃mLβm). This implies the existence of the self-similar variable (2.1). In this
case, the stress-tensor components and the continuity parameter are written as

σij(r, ϕ, t) = (At)−1/mσ̂ij(R,ϕ), ψ(r, ϕ, t) = ψ̂(R,ϕ),

where σ̂ij(R,ϕ) and ψ̂(R,ϕ) are dimensionless functions of the dimensionless variable R and ϕ determined by
solving particular boundary-value problems.

3. Antiplane Shear of Space with a Semi-Infinite Crack (Self-Similar Solution of the Coupled
Problem). We consider the problem of a semi-infinite antiplane shear crack under conditions of creep in a damaged
medium. From the results of [1, 2], it is assumed that near the crack tip there is a region of completely damaged
material, in which all stress-tensor components and continuity vanish.

Thus, it is necessary to find a solution of the system of equations consisting of the equilibrium equation
∂

∂R
(Rτ̂rz) +

∂τ̂ϕz
∂ϕ

= 0 (3.1)

and the compatibility relations formulated for creep strain rates γ̂ϕz and γ̂rz:

∂

∂R
(Rγ̂ϕz) =

∂γ̂rz
∂ϕ

. (3.2)

Here γ̂sz = (τ̂ /ψ̂)n−1τ̂sz/ψ̂, τ̂ =
√

(τ̂rz)2 + (τ̂ϕz)2, γ̂sz(R,ϕ) = 2γsz(r, ϕ, t)(At)n/m/(3B) (s = r, ϕ), and the kinetic
equation

R
∂ψ̂

∂R
= −βm

( τ̂
ψ̂

)m
. (3.3)

The solution of system (3.1)–(3.3) should satisfy the following boundary conditions: the condition of absence
of surface forces on the crack sides

τ̂ϕz(R,ϕ = π) = 0 (3.4)

and the symmetry condition on the crack prolongation

τ̂rz(R,ϕ = 0) = 0. (3.5)

As R→∞, the asymptotic condition becomes

τ̂sz(R→∞, ϕ)→ Rβ τ̄sz(ϕ, n) (3.6)

(boundary condition at an infinite point).
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A solution of system (3.1)–(3.3) subject to boundary conditions (3.4)–(3.6) is sought over the entire plane
except in the completely damaged zone, inside which the material behavior is not described by the equations
formulated. It is assumed that inside the region of completely damaged material, all stress-tensor components and
continuity vanish, and on the boundary of the completely damaged zone, the sought-for solution should obey the
continuity conditions ψ̂ = 0 and τ̂sz = 0 (here and below hat is omitted).

Below we describe the method of eigenfunction expansion for arbitrary n and m = 0.7n. A solution of system
(3.1)–(3.3) subject to boundary conditions (3.4)–(3.6) is sought in the form of power expansions with the principal
terms

(τsz/ψ)(R,ϕ) = Rβf (0)
sz (ϕ) + . . . , ψ(R,ϕ) = 1− . . . (β < 0) (3.7)

in the limit R→∞, moving from the infinite point to the crack tip.
The functions f (0)

sz (ϕ) are obtained from the solution of system (3.1)–(3.3) subject to boundary conditions
(3.4)–(3.6). Substituting the principal terms of the asymptotic expansions (3.7) into the equilibrium equation and
consistency relation, we obtain the following system of two ordinary differential equations:

(f (0)
ϕz )′ = −(β + 1)f (0)

rz , (f (0)
rz )′ = f (0)

ϕz

(βn+ 1)f2 + (n− 1)(β + 1)(f (0)
rz )2

f2 + (n− 1)(f (0)
rz )2

, (3.8)

where f(ϕ) =
√

(f (0)
rz )2 + (f (0)

ϕz )2 subject to the boundary conditions f (0)
rz (0) = 0 and f

(0)
ϕz (π) = 0.

In constructing a numerical solution of system (3.8), the boundary condition at ϕ = π is replaced by the
initial condition f

(0)
ϕz (0) = c with ϕ = 0. By virtue of homogeneity of system (3.8), it is possible to adopt the

normalization condition f
(0)
ϕz (0) = 1. Thus, the initial conditions become

f (0)
rz (0) = 0, f (0)

ϕz (0) = 1. (3.9)

Solving system (3.8) subject to boundary conditions (3.9) as an eigenvalue problem using the Runge–Kutta–Feldberg
method, it is possible to find a numerical solution (for example, the value of β = −1/(n + 1) corresponds to the
well-known Hutchinson–Rice–Rosenberg solution [13]).

The kinetic equation (3.3) leads to a binomial asymptotic expansion of the continuity parameter ψ(R,ϕ) =
1−Rβmfm(ϕ).

Because on the boundary of the completely damaged region, the continuity parameter vanishes: ψ = 1 −
Rβmfm = 0, the geometry of this region can be estimated as: R(ϕ) = [f(ϕ)]−1/β .

Considering the terms of the asymptotic expansion next to the principal term, it is possible to refine the
geometry of the completely damaged region.

The binomial asymptotic expansion of the effective stress tensor components is sought in the form

(τsz/ψ)(R,ϕ) = Rβf (0)
sz (ϕ) +Rβ1f (1)

sz (ϕ) + . . . . (3.10)

In what follows, we shall use the asymptotic expansions to the stress tensor components and creep strain rates:

τsz(R,ϕ) = Rβf
(0)
sz −Rβ(1+m)f

(0)
sz fm +Rβ1f

(1)
sz ,

γsz(R,ϕ) = fn−1{Rβnf (0)
sz +Rβ(n−1)+β1 [f (1)

sz + (n− 1)f (0)
sz f1f

−2]}.

The stress-tensor components contain terms with the exponents β, β1, and β(1 +m) of R. Three cases are
possible: β1 < β(1 +m), β1 > β(1 +m), and β1 = β(1 +m). In the first case, the new functions of the asymptotic
expansion of the stress-tensor component are ignored, and in the second case, the term containing the function of
angular distributions of the stress-tensor components included in the principal term of the asymptotic expansion is
ignored.

We take into account all terms and assume that the terms containing Rβ1 and Rβ(1+m) have the same order
of magnitude, and, hence, β1 = β(1 +m).

Substituting the asymptotic expansion (3.10) into the equilibrium equation (3.1) and the compatibility rela-
tion (3.2), we obtain a system of four ordinary differential equations, namely, system (3.8) and two new differential
equations for the two functions f (1)

sz :

(f (1)
ϕz )′ = mf (0)

ϕz f
m−2[f (0)

rz (f (0)
rz )′ + f (0)

ϕz (f (0)
ϕz )′] + (f (0)

ϕz )′fm − (β1 + 1)[f (1)
rz − fmf (0)

rz ],
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(f (1)
rz )′ = {(1 + βn+ βm)[f2f (1)

ϕz + (n− 1)f1f
(0)
ϕz ]− (n− 1)f1(f (0)

rz )′

− (n− 1)[f (0)
rz (f (0)

rz )′ + f (0)
ϕz (f (0)

ϕz )′][f (1)
rz + (n− 1)f−2f1f

(0)
rz ] (3.11)

−(n−1)[f (1)
rz (f (0)

rz )′+f (1)
ϕz (f (0)

ϕz )′+f (0)
ϕz (f (1)

ϕz )′]f (0)
rz −2(n−1)f−2f1f

(0)
rz [f (0)

rz (f (0)
rz )′+f (0)

ϕz (f (0)
ϕz )′]}[f2+(n−1)(f (0)

rz )2]−1.

Here f1(ϕ) = f
(0)
rz f

(1)
rz + f

(0)
ϕz f

(1)
ϕz . The boundary conditions are written as

f (0)
rz (0) = 0, f (0)

ϕz (π) = 0, f (1)
rz (0) = 0, f (1)

ϕz (π) = 0.

Solving system (3.8), (3.11) by the Runge–Kutta–Feldberg method and using the shooting method [selecting
the condition f

(1)
ϕz (0) = c such that for ϕ = π the boundary condition f

(1)
ϕz = 0] is satisfied, we obtain a solution

that satisfies the initial conditions

f (0)
rz (0) = 0, f (0)

ϕz (0) = 1, f (1)
rz (0) = 0, f (1)

ϕz (0) = c.

From the kinetic equation (3.3) and the asymptotic expansion (3.10)

R
∂ψ

∂R
= −βmRβmfm(1 +mRβ1−βf−2f1),

we obtain the trinomial asymptotic expansion of the continuity parameter ψ(R,ϕ) = 1−Rβmfm−mR2βmfm−2f1/2.
The geometry of the completely damaged region is defined by the equation

R(ϕ) = [(fm +
√
f2m + 2mfm−2f1)/2]−1/(βm).

To refine the configuration of the damaged region, it is necessary to construct the following terms in the
asymptotic expansion of the effective stress tensor components:

(τsz/ψ)(R,ϕ) = Rβf (0)
sz (ϕ) +Rβ1f (1)

sz (ϕ) +Rβ2f (2)
sz (ϕ) + . . . . (3.12)

The asymptotic expansions for the stress-tensor components and strain rates are written as

τsz = Rβf (0)
sz +Rβ1(f (1)

sz − f (0)
sz f

m)−Rβ(1+2m)(f (1)
sz f

m +mf (0)
sz f

m−2f1/2) +Rβ2f (2)
sz ,

γsz = fn−1{Rβnf (0)
sz +Rβ(n−1)+β1 [f (1)

sz + (n− 1)f (0)
sz f1f

−2]

+Rβ(n−1)+β2 [f (2)
sz + f (0)

sz f2f
−2] + (n− 1)R2β1−βf (1)

sz f1f
−2}.

By analogy with the binomial asymptotic expansion of the stress-tensor components, it is assumed that the
terms containing Rβ2 and Rβ(1+2m) have the same order of smallness and, hence, β2 = β(1 + 2m).

Substituting (3.12) into the equilibrium equation (3.1) and the compatibility relation (3.2), we obtain a
system of six ordinary differential equations, namely, system (3.8), (3.11) and two new differential equations for the
two functions f (2)

sz :

(f (2)
ϕz )′ = −(β2 + 1)[f (2)

rz −mf (0)
rz f

m−2f1/2− f (1)
rz f

m] + (f (1)
ϕz )′fm +m(f (0)

ϕz )′fm−2f1/2

+m(m− 2)f (0)
ϕz f

m−4f1[f (0)
rz (f (0)

rz )′ + f (0)
ϕz (f (0)

ϕz )′]/2

+mf (0)
ϕz f

m−2[(f (0)
rz )′f (1)

rz + (f (1)
rz )′f (0)

rz + (f (0)
ϕz )′f (1)

ϕz + (f (1)
ϕz )′f (0)

ϕz ]/2 +mf (1)
ϕz f

m−2[f (0)
rz (f (0)

rz )′ + f (0)
ϕz (f (0)

ϕz )′]/2,

(f (2)
rz )′ = {(1 + βn+ 2βm)[f2f (2)

ϕz + (n− 1)f1f
(1)
ϕz + (n− 1)f2f

(0)
ϕz ]

(3.13)

− [f (1)
rz (f (1)

rz )′ + f (1)
ϕz (f (1)

ϕz )′ + f (2)
rz (f (0)

rz )′ + f (2)
ϕz (f (0)

ϕz )′ + f (0)
ϕz (f (2)

ϕz )′](n− 1)f (0)
rz

− (n− 1)[f (2)
rz + (n− 1)f−2f1f

(1)
rz + (n− 1)f−2f2f

(0)
rz ][f (0)

rz (f (0)
rz )′ + f (0)

ϕz (f (0)
ϕz )′]

− (n− 1)[f1(f (1)
rz )′ + f2(f (0)

rz )′]− (n− 1)f (1)
rz [f (1)

rz (f (0)
rz )′ + f (0)

rz (f (1)
rz )′ + f (1)

ϕz (f (0)
ϕz )′ + f (0)

ϕz (f (1)
ϕz )′]

+ 2(n− 1)f−2(f1f
(1)
rz + f2f

(0)
rz )[f (0)

rz (f (0)
rz )′ + f (0)

ϕz (f (0)
ϕz )′]}[f2 + (n− 1)(f (0)

rz )2]−1.
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Fig. 1 Fig. 2

Fig. 1. Geometry of the region of completely damaged material for n = m = 1: curve 1 is the
boundary of the region defined by the binomial asymptotic expansion of the continuity parameter,
curve 2 is the boundary of the region defined by the trinomial asymptotic expansion of the continuity
parameter, and curve 3 is the boundary of the region defined by the four-term asymptotic expansion
of the continuity parameter.

Fig. 2. Geometry of the region of completely damaged material for n = 3 and m = 0.7n (notation
same as in Fig. 1).

TABLE 1

n m β n m β

1 1 −1.5000 6 0.7n −1.1495
2 0.7n −1.2303 7 0.7n −1.1455
3 0.7n −1.1830 8 0.7n −1.1425
4 0.7n −1.1648 9 0.7n −1.1405
5 0.7n −1.1553 10 0.7n −1.1390

Here f2 = (f (1)
ϕz )2/2 + (f (1)

rz )2/2 + f
(0)
rz f

(2)
rz + f

(0)
ϕz f

(2)
ϕz . The boundary conditions are written as

f (0)
rz (0) = 0, f (0)

ϕz (π) = 0, f (1)
rz (0) = 0, f (1)

ϕz (π) = 0, f (2)
rz (0) = 0, f (2)

ϕz (π) = 0.

By analogy with the binomial asymptotic expansion, we obtain a solution that satisfies the boundary con-
ditions

f (0)
rz (0) = 0, f (0)

ϕz (0) = 1, f (1)
rz (0) = 0, f (1)

ϕz (0) = c, f (2)
rz (0) = 0, f (2)

ϕz (0) = c1.

For the problem considered, it is natural to set β = −1/(n + 1). However, it is established that for ϕ = π, the
boundary conditions for n = m = 1 are not satisfied: irrespective of the choice of the initial value c1, the function f (2)

ϕz

takes the same value different from zero for ϕ = π, which is confirmed by both analytical and numerical solutions
for this case. Therefore, β 6= −1/(n+ 1).

From the kinetic equation (3.3), we obtain

R
∂ψ

∂R
= −βmRβmfm(1 +mRβ1−βf−2f1 +mRβ2−βf−2f2),

Then, the four-term asymptotic expansion of the continuity parameter becomes

ψ(R,ϕ) = 1−Rβmfm −mR2βmfm−2f1/2−mR3βmfm−2f2/3.

The geometry of the completely damaged zone is defined by the equation

z3 − z2fm −mzfm−2f1/2−mfm−2f2/3 = 0 (z = R−βm). (3.14)

It should be noted that for n = m = 1, the cubic equation (3.14) has one negative real root and two complex
conjugate roots, which contradicts the physical meaning of the self-similar variable. The regions constructed on the
basis of the binomial and trinomial expansions of the continuity parameter differ substantially [the characteristic
linear dimension R(0) differs by a factor of almost two], which is further proof of the statement β 6= −1/(n+ 1).
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Fig. 3 Fig. 4

Fig. 3. Geometry of the region of completely damaged material for n = 5 and m = 0.7n (notation
same as in Fig. 1).

Fig. 4. Geometry of the region of completely damaged material for n = 7 and m = 0.7n (notation
same as in Fig. 1).

The eigenvalue β is determined from the condition of “convergence” of the completely damaged regions ob-
tained on the basis of the binomial, trinomial, and four-termed expansions of the continuity parameter. Table 1 lists
eigenvalues β obtained by numerical analysis of system (3.13) for various values of the material constants n and m
that lead to “convergent” regions of completely damaged material. The configurations of the completely damaged
regions for the values of β obtained are shown in Figs. 1–4 [X1 = x1C̃

1/β(At)1/(βm) and X2 = x2C̃
1/β(At)1/(βm),

where x1 and x2 are Cartesian coordinates with origin at the crack tip].
4. Estimate of the Crack Growth Rate. Returning to the dimensional variables, it is possible to

evaluate the dimensions of the region of completely damaged material r = R(0)C̃−1/β(At)−1/(βm). Then, the crack
growth rate becomes

dr

dt
= − 1

βm
R(0)C̃−1/βA−1/(βm)t−(1+1/(βm)),

i.e., at the initial time, the crack growth rate tends to infinity, which corresponds to instantaneous start of the
crack. The growth rate decreases with time, tending to zero in the limit (t→∞).

Conclusions. The asymptotic form of the far stress field, which determines the configuration of the region
of completely damaged material, is established in a coupled formulation of creep theory and damage mechanics.

Asymptotic eigenfunction expansions of the effective stress tensor components and the continuity parameter
are constructed, and the configuration of the damaged zone for various exponents of the degrees of the kinetic
equation of damage accumulation and the power law of creep is determined in the coupled formulation (creep–
damage).

The crack growth rate is estimated. It is shown that at the initial time, the crack growth rate tends to
infinity, which corresponds to instantaneous start of the crack, and with time, it decreases, tending to zero in the
limit.
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